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Abstract—This paper presents a Neyman-Pearson (NP) crite-
rion based optimal distributed detection framework for a massive
multiple-input multiple-output (MIMO) wireless sensor network
(WSN). Robust fusion rules are determined for the local decisions
transmitted by the sensor nodes, considering the availability of
both perfect as well as imperfect channel state information (CSI)
at the fusion center. Further, the probability of error of the
individual sensor decisions, which arises in practical scenarios,
is also incorporated in the decision framework. Closed form
expressions are derived to characterize the resulting probabilities
of detection and false alarm for the system. Simulation results
are presented to demonstrate the improved performance of the
proposed detectors in comparison to the existing detectors and
to validate the theoretical findings.

I. INTRODUCTION

Massive MIMO communication has recently attracted sig-
nificant interest for potential application in wireless sensor
networks (WSNs). This is motivated by the fact that the large
antenna array employed at the base station/ fusion center can
simultaneously serve several sensors [1], in turn leading to
various benefits such as increased spectral efficiency, reduced
latency, simplified signal processing [2], improved reliability
and power efficiency [3].

The distributed detection problem, where multiple sensors
send their individual test statistics to be combined at the
fusion center, has been widely studied in the existing liter-
ature [4], [5]. The work in [6] considers fusion of analog
sensor observations, whereas the work in [5] combines the
local sensor decisions. On the other hand, the scheme in [7]
proposes decoding followed by fusion of the individual sensor
test statistics in order to make a global decision. Similarly, the
works in [8], [9] consider a MIMO system model to develop
detectors that are robust to the uncertainty in the CSI statistics.
Moreover, in [9], the authors develop a deflection coefficient
based optimization framework to obtain optimal signaling
vectors, which can further enhance detection performance.
However, all the above works consider an orthogonal multiple
access channel (MAC) between the sensors and the fusion
center. Employing a coherent MAC-based WSN leads to a
significant reduction in the communication bandwidth. Based
on this, the authors in [10] develop the likelihood ratio rest
(LRT) based Max-Log, modified maximal ratio combiner
(MMRC) detectors for a large antenna array MIMO WSN.
However, the detectors presented in [10] consider identical
local detection performance, i.e., all the sensors have identical
probabilities of detection and false alarm, which restricts the
applicability of the framework proposed therein.

This work considers a coherent MAC-based WSN com-
prising of a massive antenna array based fusion center with
multiple sensor nodes and significantly extends the results
in [10]. Each sensor is assumed to transmit a signal vec-
tor that conveys its local decision to the fusion center. NP
criterion-based novel detection rules are determined for the
distributed detection scenario described above in a massive
MIMO WSN, incorporating also non-idealities such as the
probabilities of detection (PD,k) and false alarm (PF,k) of
the local sensor decisions. Further, the proposed framework
considers the availability of both perfect and imperfect CSI
at the fusion center, thus rendering the resulting decision
rules robust. Closed form expressions are obtained for the
system level probabilities of detection and false alarm at the
fusion center to analytically characterize the performance of
the proposed detectors. Finally, simulation results are included
to demonstrate the improved detection performance of the
proposed schemes.

II. SYSTEM MODEL

Consider a wireless sensor network (WSN) wherein the
sensors are sensing a specific signal of interest. This scenario
can be modeled as a decentralized binary hypothesis testing
problem, where hypotheses H0 and H1 correspond to the
absence and presence of the target of interest, respectively.
The WSN consists of K sensors, each having a single antenna,
transmitting to the fusion center equipped with a large antenna
array of M ≫ K antennas over a flat fading multiple access
channel (MAC). The kth sensor, 1 ≤ k ≤ K, transmits a
vector xk ∈ CL×1 over L time instants and can take values
xk = uk or −uk corresponding to its local decisions for the
presence or absence of the target of interest, respectively. The
probabilities of detection and false alarm for the kth sensor,
denoted by PD,k and PF,k, respectively, are characterized as

PD,k = Pr(xk = uk|H1),

PF,k = Pr(xk = uk|H0).
(1)

Therefore, the received signal y(l) ∈ CM×1 at the fusion cen-
ter corresponding to the composite transmitted signal vector
at the lth instant which consists of symbols transmitted by
all the K sensors, i.e. x(l) = [x1(l), . . . , xK(l)]T ∈ CK×1,
1 ≤ l ≤ L, such that xk(l) ∈ {uk(l),−uk(l)}, can be
expressed as

y(l) =
√
puGx(l) + n(l), (2)

where G ∈ CM×K denotes the channel matrix between the
fusion center and the K sensors, such that gmk = [G]mk rep-
resents the channel coefficient between the mth, 1 ≤ m ≤ M ,



antenna at the fusion center and the kth sensor, pu is the
average transmit power of each sensor and n(l) ∈ CM×1 is the
circularly symmetric additive white Gaussian noise which can
be modeled as n(l) ∼ CN (0, σ2

nIM ). The channel coefficient,
gmk is represented as gmk = hmk

√
βk, where hmk denotes

the small-scale fading coefficient, and
√
βk accounts for the

pathloss and log-normal shadowing that remains constant
over multiple coherence intervals and is independent across
m. Moreover, the channel coefficients hmk are assumed to
be independent and identically distributed (i.i.d.) symmetric
complex Gaussian random variables, i.e., hmk ∼ CN (0, 1).
Hence, the channel matrix is given as

G = HD1/2, (3)

where H denotes the small-scale fading matrix and D repre-
sents a diagonal matrix with the large-scale fading coefficients
βk, 1 ≤ k ≤ K, along its principal diagonal, i.e. [D]kk = βk.
Using (2), the received signal at the fusion center obtained
by concatenating the L transmitted signal vectors x(l), i.e.
X = [x(1), . . . ,x(L)] ∈ CK×L, can be expressed as

Y =
√
puGX+N, (4)

where Y = [y(1), . . . ,y(L)] ∈ CM×L is the received signal
matrix, N denotes the noise matrix obtained by stacking the
vectors n(l), and elements of N are i.i.d. random variables, i.e.
ni,j(l) ∼ CN (0, σ2

n). The elements of gk are zero-mean i.i.d.
random variables, under favorable propagation conditions [11],
with variances E{|gmk|2} = βk. Further, the different column
vectors of matrix G corresponding to different sensors, are
assumed to be mutually independent. This assumption holds
in a multi-sensor massive MIMO WSN since the sensors are
typically spatially separated by large distances. Therefore, by
the law of large numbers, it follows that

(1/M)GHG ≈ D, for M ≫ K. (5)

Further, as a result of the large antenna array, the random
channel vectors corresponding to different sensors become
pairwise orthogonal under the favorable propagation condi-
tions described above.

III. OPTIMAL FUSION RULE WITH PERFECT CSI
In this section, the optimal fusion rule is derived for

the scenario with perfect CSI at the fusion center. The log
likelihood ratio test (LLRT) based on the Neyman-Pearson
(NP) criterion for the massive MIMO WSN system model in
(4) is determined as

T (Y) = ln
[
p(Y|H1)

p(Y|H0)

]
H1

≷
H0

γ, (6)

where p(Y|H1), p(Y|H0) denote the PDFs of Y corre-
sponding to the alternative and null hypotheses and γ is the
detection threshold. The expression for the LLRT in (6), can
be determined by substituting the relevant quantities as,

T (Y)=

L∑
l=1

ln

[∑
x(l) exp

(
−∥y(l)−√

puGx(l)∥2

σ2
n

)
Pr(x(l)|H1)∑

x(l) exp
(
−∥y(l)−√

puGx(l)∥2

σ2
n

)
Pr(x(l)|H0)

]
.

However, the LLRT presented above is computationally com-
plex and numerically unstable due to the presence of expo-
nential terms with large negative exponents [10]. Therefore,
for a practically amenable implementation, a simplified LRT
can be obtained by following the two step procedure described
next. In the first step, the output is linearly filtered to recover
the soft decisions of the individual sensors. In the subsequent
step, a final decision is obtained incorporating the individual
sensor decisions. The equivalent system model obtained after
matched filtering in (4) is expressed as

Z = GHY =
√
puG

HGX+GHN, (7)

where Z = [z(1), . . . , z(L)] ∈ CK×L is the filter
output matrix. For a given vector x(l), the filter out-
put vector z(l) follows the complex Gaussian distribution
CN (

√
puG

HGx(l), σ2
nG

HG). Simplifying the expression in
(7), using the result described in (5), the output of the matched
filter at the lth time instant is z(l) = [z1(l), . . . , zK(l)]T ∈
CK×1, 1 ≤ l ≤ L, which can be determined as

z(l) =
√
puMDx(l) + ñ(l). (8)

The quantity ñ(l) ∈ CK×1 is a column vector of the noise
matrix Ñ = GHN ∈ CK×L with zero mean and covariance
matrix MDσ2

n, i.e., ñ(l) ∼ CN (0,MDσ2
n). Thus, with the

aid of linear processing at the fusion center with a very large
antenna array, i.e., M ≫ K, the multiple access channel
(MAC) between the sensors and the fusion center reduces
to the parallel access channel (PAC) model above. The filter
output vector for the kth user, corresponding to the vector
xk = [xk(1), . . . , xk(L)]

T ∈ CL×1, can be equivalently
written as

zk =
√
puMβkxk + ñk, (9)

where zk = [zk(1), . . . , zk(L)]
T ∈ CL×1 and zk(l)

follows the complex Normal distribution, i.e. zk(l) ∼
CN (

√
puMβkxk(l),Mβkσ

2
n). Hence, the LLRT based opti-

mal test statistic T (Z) for distributed detection in the massive
MIMO WSN with perfect CSI can be expressed as

T (Z) = ln
[
p(Z|H1)

p(Z|H0)

]
= ln

[ K∏
k=1

p(zk|H1)

p(zk|H0)

]
. (10)

The test in (10) above reduces to the form in (11) upon
further simplification. Substituting the local sensor perfor-
mance metrics from (1) and employing the conditional
PDFs of zk corresponding to xk∈{uk,−uk}, given as,
ϕ(zk|xk=uk)∼CN (

√
puMβkuk,Mβkσ

2
nI), ϕ(zk|xk=−uk)

∼CN (−√
puMβkuk,Mβkσ

2
nI), respectively, (11) reduces to

T (Z)=

K∑
k=1

ln

[
PD,k+(1−PD,k) exp

(−4
√
pu

σ2
n

R(zHk uk)
)

PF,k+(1−PF,k) exp
(−4

√
pu

σ2
n

R(zHk uk)
)], (12)

where the symbol R(�) denotes the real part. The test obtained
in (12) can be further simplified for low SNR scenarios, using
the approximations, e−v ≈ (1 − v) and ln(1 + v) ≈ v, for
sufficiently small values of v, as

T (Z) =

K∑
k=1

akR(zHk uk), (13)



T (Z)=

K∑
k=1

ln
[
ϕ(zk|xk = uk)Pr(xk = uk|H1) + ϕ(zk|xk = −uk)Pr(xk = −uk|H1)

ϕ(zk|xk = uk)Pr(xk = uk|H0) + ϕ(zk|xk = −uk)Pr(xk = −uk|H0)

]
(11)

where the constant ak for the kth sensor is defined as ak ,
(PD,k−PF,k). The low SNR approximation based test statistic
above, which is essentially a weighted matched filter, is well
suited for many practical applications that employ distributed
detection, due to its significantly lower complexity. One such
application is spectrum sensing, wherein the operating SNRs
can be as low as -25 dB. The test statistic in (13) can be
further simplified for a scenario with identical local detection
performances of the sensors, i.e., PD,k=Pd and PF,k=Pf , ∀k,
as

TI(Z) =

L∑
l=1

K∑
k=1

R(z∗k(l)uk(l)). (14)

The result below analytically characterizes the performance of
the optimal fusion rule described in (13) above.

Theorem 1. For a given threshold γ, the probabilities of
detection (PD) and false alarm (PFA) pertaining to the test
statistic in (13), for distributed detection at the large antenna
array equipped fusion center with perfect CSI are,

PD = Q

(
γ − µT |H1

σT |H1

)
, (15)

PFA = Q

(
γ − µT |H0

σT |H0

)
, (16)

where µT |H0
, µT |H1

, σ2
T |H0

and σ2
T |H1

represent the mean and
variance of the null and alternative hypotheses, given as

µT |H0
=

K∑
k=1

√
puakckMβk∥uk∥2, (17)

µT |H1
=

K∑
k=1

√
puakbkMβk∥uk∥2, (18)

σ2
T |H0

=

K∑
k=1

Mβka
2
k∥uk∥2

(
puMβk(1−c2k)∥uk∥2+

σ2
n

2

)
, (19)

σ2
T |H1

=

K∑
k=1

Mβka
2
k∥uk∥2

(
puMβk(1−b2k)∥uk∥2+

σ2
n

2

)
, (20)

with bk = (2PD,k − 1) and ck = (2PF,k − 1).

Proof. See Appendix A.

In practical scenarios, the matrix G needs to be estimated at
the fusion center, which leads to estimation errors and uncer-
tainty in the CSI. The relevant model for this CSI uncertainty
and the optimal decision rule considering the availability of
only imperfect CSI are determined in the next section.

IV. OPTIMAL FUSION RULES UNDER CSI UNCERTAINTY

Let Ĝ denote the estimated CSI. The estimation error E in
the estimated channel matrix Ĝ is defined as

E , Ĝ−G, (21)

where the kth columns of Ĝ and E are complex Gaussian ran-
dom vectors, i.e., ĝk ∼ CN (0, β̃kIM ), ek ∼ CN (0, γe,kIM )

with β̃k , ppβ
2
k

σ2
n+ppβk

and γe,k , σ2
nβk

σ2
n+ppβk

. The parameters
β̃k and γe,k of the probability density functions (PDFs) are
obtained using the minimum mean-squared error (MMSE)
estimate of G for the orthogonal pilot matrix Φ, i.e., ΦHΦ =
IK , in (4), given as [3], Ĝ = 1√

pp
YΦ∗D = (G+ 1√

pp
Wp)D,

where pp , τppu is the pilot power for τp, τp ≥ K,
pilot symbols, and the matrices D and Wp are given as
D ,

(σ2
n

pp
D−1 + IK

)−1
and Wp , NΦ∗. Under favorable

propagation conditions, the different column vectors of ma-
trix Ĝ, corresponding to different users, are assumed to be
mutually independent with elements of ĝk as zero-mean i.i.d.
random variables, with variance E{|ĝmk|2} = β̃k. Hence, by
the law of large numbers, it follows that (1/M)ĜHĜ ≈ D̃,
for M ≫ K, where [D̃]kk = β̃k. Similar to the perfect
CSI case, the transmit vectors x(l) ∈ CK×1, 1≤l≤L are
stacked as X = [x(1), . . . ,x(L)] ∈ CK×L corresponding
to their local decisions. Hence, the received signal matrix
Y = [y(1), . . . ,y(L)] ∈ CM×L in (4), corresponding to the
CSI uncertainty model described in (21), can be equivalently
obtained, as

Y =
√
puĜX−√

puEX+N =
√
puĜX+W, (22)

where each column w(l), 1≤l≤L of the noise matrix W,
follows a Gaussian distribution w(l) ∼ CN (0,Rw(l)) with
covariance matrix Rw(l)=E{w(l)wH(l)}=

(
pu

∑K
k=1 γe,k +

σ2
n

)
IM=σ2

wIM , Ĝ is the MMSE estimate of G and E denotes
the estimation error matrix defined in (21). In order to obtain
an analytically tractable LRT, we initially perform matched
filtering on the received matrix Y, i.e. Z̃ = ĜHY. Employing
the properties pertaining to favorable propagation described
above, the columns z̃(l) ∈ CK×1 of the filter response matrix
Z̃ can be obtained as,

z̃(l) =
√
puMD̃x(l) + w̃(l), (23)

where the noise vector w̃(l) is distributed as w̃(l) ∼
CN (0,MD̃σ2

w). Similar to (9), the above model for the
received vector z̃k, corresponding to the transmit vector xk

of user k, with CSI uncertainty, can be expressed as z̃k =√
puMβ̃kxk + w̃k. The elements of the noise vector w̃k are

distributed as, w̃k(l) ∼ CN (0,Mβ̃kσ
2
w). Therefore, the CSI

uncertainty based robust test statistic TR(Z̃), for distributed
detection in the massive MIMO WSN, follows from the
Neyman Pearson (NP) criterion as

TR(Z̃) = ln
[
p(Z̃|H1; Ĝ)

p(Z̃|H0; Ĝ)

]
= ln

[ K∏
k=1

p(z̃k|H1; ĝk)

p(z̃k|H0; ĝk)

]
. (24)

Consider the signaling scenario wherein the kth sensor trans-
mits the L symbol vector uk or −uk, to indicate the presence
or absence of the target of interest, respectively. The test statis-
tic in (24) can be further expanded as (25), with the relevant



TR(Z̃) =

K∑
k=1

ln
[
ϕ(z̃k|xk = uk; ĝk)Pr(xk = uk|H1) + ϕ(z̃k|xk = −uk; ĝk)Pr(xk = −uk|H1)

ϕ(z̃k|xk = uk; ĝk)Pr(xk = uk|H0) + ϕ(z̃k|xk = −uk; ĝk)Pr(xk = −uk|H0)

]
(25)
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Fig. 1. Receiver operating characteristic (ROC) plot for comparing (a) Max-Log and MMRC in [10], MRC with the proposed robust detector (27) for
M = 50 antennas, K = 10 sensors, L ∈ {1, 2} and at SNR pu = −18 dB. (b) proposed robust test in (27) with M ∈ {20, 50} antennas, K = 10 sensors,
L ∈ {1, 2, 3, 4} and at SNR pu = −18 dB. (c) theoretical and simulation performance of the detectors under perfect CSI in (13) and imperfect CSI in (27)
with K = 10 sensors, L ∈ {1, 2} and SNR pu = −20 dB.

distributions determined as ϕ(z̃k|xk = uk; ĝk) ∼ CN (
√
puM

β̃kuk,Mβ̃kσ
2
wIL), ϕ(z̃k|xk=−uk; ĝk) ∼ CN (−√

puMβ̃k

uk,Mβ̃kσ
2
wIL). Substituting the corresponding PDFs in (25)

leads to the simplified test statistic below for this scenario

TR(Z̃)=

K∑
k=1

ln
[PD,k+(1−PD,k) exp

(−4
√
pu

σ2
w

R(z̃Hk uk)
)

PF,k+(1−PF,k) exp
(−4

√
pu

σ2
w

R(z̃Hk uk)
) ].(26)

Employing the low SNR approximation described in section
III, the robust test for distributed detection reduces to

TR(Z̃) =

K∑
k=1

akR(z̃Hk uk). (27)

Finally, for the scenario with identical local sensor per-
formance metrics, i.e., PD,k = Pd and PF,k = Pf ,
the test statistic above further simplifies as TR-I(Z̃) =∑L

l=1

∑K
k=1 R(z̃∗k(l)uk(l)). Result below characterizes the

detection performance for the test derived above in (27).

Theorem 2. The performance of the robust detector in (27)
can be characterized in terms of the probabilities of detection
(PD) and false alarm (PFA), for a given threshold γ, as

PD = Q

(
γ − µTR|H1

σTR|H1

)
, (28)

PFA = Q

(
γ − µTR|H0

σTR|H0

)
, (29)

where µTR|H0
, µTR|H1

, σ2
TR|H0

and σ2
TR|H1

represent the mean
and variance of the test statistic under the null and alternative
hypotheses, given as

µTR|H0
=

K∑
k=1

√
puakckMβ̃k∥uk∥2, (30)

µTR|H1
=

K∑
k=1

√
puakbkMβ̃k∥uk∥2, (31)

σ2
TR|H0

=

K∑
k=1

Mβ̃ka
2
k∥uk∥2

(
puMβ̃k(1−c2k)∥uk∥2+

σ2
w

2

)
,

σ2
TR|H1

=

K∑
k=1

Mβ̃ka
2
k∥uk∥2

(
puMβ̃k(1−b2k)∥uk∥2+

σ2
w

2

)
,

with bk = (2PD,k − 1) and ck = (2PF,k − 1).

Proof. Follows along the lines similar to the proof of Theorem
1 given in Appendix A.

V. SIMULATION RESULTS

This section presents simulation results to demonstrate the
performance of the proposed detectors (13) and (27) and
also compare their performance against the Max-Log, MMRC
techniques proposed in [10] and the standard maximal ra-
tio combiner (MRC) for the massive MIMO WSN in the
existing literature. The composite transmit matrix [X]K×L

corresponding to the local decisions of the K users is set as
X ∈ {+U,−U}. The sensors in the WSN are considered to
be placed uniformly around the fusion center in an annular
region with minimum and maximum radii rc = 100 m and
rm = 1000 m, respectively. The large-scale fading is modeled
as βk = vk/(rk/rc)

2 similar to [3], where vk follows a log-
normal distribution, i.e., 10log10vk ∼ N (µv, σ

2
v), where rk

denotes the distance between the kth sensor and the fusion
center. The parameters µv = 4 dB and standard deviation
σv = 2 dB [10]. A total of K = 10 sensors are deployed
with each having local probabilities of detection PD,k and
false alarm PF,k evenly spaced in the intervals [0.95, 0.55] and
[0.01, 0.1], respectively. We assume that τp = K symbols, i.e.,
number of sensors, are used for channel estimation, since this
is the minimum required [3].

Fig. 1a plots the probability of detection (PD) versus the
probability of false alarm (PFA) of the proposed scheme for
L ∈ {1, 2}. It can be observed that the proposed schemes



have an improved performance in comparison to the existing
schemes presented in [10]. The proposed robust detector for
L = 1 has a performance similar to that of the Max-Log
detector. Fig. 1b shows the performance of the proposed
scheme for various values of the decision vector length L ∈
{1, 2, 3, 4}. It can be observed that the detection performance
improves with an increase in the decision vector length. Also,
the performance significantly improves with the increase in
the number of antennas at the fusion center, validating the
benefit of employing massive MIMO technology. Fig. 1c
compares the probabilities of detection and false alarm with
the corresponding analytical values obtained from the results in
Theorem 1 and Theorem 2, which can be seen to be in close
agreement. Finally, Fig. 2 plots the probability of detection
(PD) versus number of antennas M at the fusion center for a
fixed PFA = 0.01. The trend shows that an increasing number
of antennas leads to a significant improvement in the detection
performance.

VI. CONCLUSION

This paper presented the NP criterion based optimal de-
tection rules for distributed detection in a massive MIMO-
based WSN. Analysis was carried out for both perfect and
imperfect CSI scenarios incorporating also the probability of
error of the local sensor decisions. Further, the system perfor-
mance was characterized through the evaluation of closed form
expressions for the probabilities of detection PD and false
alarm PFA. Simulation results demonstrate that the proposed
detectors have a better performance as compared to the Max-
Log, MRC and MMRC detectors. In the future, the framework
developed can facilitate capacity, CSI averaged large antenna
array analyses, and also determination of the optimal transmit
vectors [9] to further enhance detection performance.

APPENDIX A
PROOF OF THEOREM 1

The mean (17) of the test statistic in (13) for H0 given as
µT |H0

=
∑K

k=1 Tk|0 where Tk|0 is shown below

Tk|0 =akR(E{(zHk uk|H0})
=akR

(√
puMβkE{xH

k |H0}uk

)
=akR

(√
puMβk(u

H
k Pr(xk = uk|H0)

− uH
k Pr(xk = −uk|H0))uk

)
=akR

(√
puMβk(u

H
k PF,k − uH

k (1− PF,k))uk

)
=
√
puakckMβk∥uk∥2. (32)

Similarly, the mean of the test statistic for the alternative
hypothesis H1 is µT |H1

=
∑K

k=1 Tk|1, where Tk|1 can be
determined as shown below

Tk|1=akR(E{(zHk uk)|H1})=akR(
√
puMβkE{xH

k |H1}uk)

=akR(
√
puMβku

H
k (Pr(xk=uk|H1)−Pr(xk=−uk|H1))uk)

=
√
puakMβkR(uH

k (2PD,k − 1))uk)=
√
puakbkMβk∥uk∥2.

(33)
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Fig. 2. PD vs. M for perfect and imperfect CSI scenarios, for a WSN with
K = 10 sensors, L ∈ {2, 4} and SNR pu = −18 dB.

The variance σ2
T |H0

for the null hypothesis H0 is given as

σ2
T |H0

= E{T 2(Z)|H0} − (E{T (Z)|H0})2, (34)

where the first term in (34) is E{T 2(Z)|H0} =
E{[

∑K
k=1 akR{zHk uk}]2|H0} and is simplified to

K∑
k=1

(
puM

2β2
ka

2
k||uk||4+Mβka

2
k||uk||2

σ2
n

2

)
. (35)

Using (35), together with the expression in (17), yields the ex-
pression for the variance under H0 given in (19). Similarly, the
variance σ2

T |H1
, corresponding to hypothesis H1, is obtained

as given in (20).
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